摘要(yao):針對常規太(tai)陽(yang)能(neng)利(li)用(yong)(yong)(yong)具有間歇性(xing)(xing)(xing)和(he)(he)不穩(wen)定性(xing)(xing)(xing)等問題(ti)(ti),介紹(shao)了(le)光(guang)(guang)熱(re)(re)技(ji)術(shu)在(zai)光(guang)(guang)熱(re)(re)發電(dian)和(he)(he)太(tai)陽(yang)能(neng)直接(jie)熱(re)(re)利(li)用(yong)(yong)(yong)方面(mian)配備(bei)儲(chu)(chu)(chu)熱(re)(re)系(xi)(xi)統(tong)實現太(tai)陽(yang)能(neng)穩(wen)定供熱(re)(re)的(de)(de)(de)(de)(de)研究進展。總結(jie)(jie)了(le)目前儲(chu)(chu)(chu)熱(re)(re)技(ji)術(shu)的(de)(de)(de)(de)(de)分(fen)類方法和(he)(he)技(ji)術(shu)應(ying)用(yong)(yong)(yong)場景,綜述了(le)主流熔(rong)(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)(chu)熱(re)(re)體(ti)系(xi)(xi)(碳酸鹽(yan)(yan)(yan)、氯(lv)化鹽(yan)(yan)(yan)、氟化鹽(yan)(yan)(yan)、硝酸鹽(yan)(yan)(yan))的(de)(de)(de)(de)(de)技(ji)術(shu)原理和(he)(he)研究進展,指出(chu)不同熔(rong)(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)(chu)熱(re)(re)體(ti)系(xi)(xi)的(de)(de)(de)(de)(de)優(you)勢(shi)和(he)(he)存在(zai)的(de)(de)(de)(de)(de)技(ji)術(shu)問題(ti)(ti)。針對熔(rong)(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)(chu)熱(re)(re)的(de)(de)(de)(de)(de)技(ji)術(shu)關鍵(jian),總結(jie)(jie)了(le)在(zai)光(guang)(guang)熱(re)(re)技(ji)術(shu)領(ling)域不同場景下的(de)(de)(de)(de)(de)研究現狀和(he)(he)工藝(yi)流程,并歸納出(chu)熔(rong)(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)(chu)熱(re)(re)體(ti)系(xi)(xi)在(zai)光(guang)(guang)熱(re)(re)領(ling)域的(de)(de)(de)(de)(de)發展趨勢(shi)。一是根據應(ying)用(yong)(yong)(yong)場景選擇合適(shi)的(de)(de)(de)(de)(de)集熱(re)(re)方式(shi),優(you)化光(guang)(guang)熱(re)(re)集熱(re)(re)、熔(rong)(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)(chu)熱(re)(re)的(de)(de)(de)(de)(de)容量配置和(he)(he)協(xie)調控(kong)制;二是研發更低熔(rong)(rong)(rong)點、更寬液(ye)體(ti)溫域、低腐蝕性(xing)(xing)(xing)的(de)(de)(de)(de)(de)熔(rong)(rong)(rong)鹽(yan)(yan)(yan)來提(ti)高熔(rong)(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)(chu)熱(re)(re)的(de)(de)(de)(de)(de)適(shi)用(yong)(yong)(yong)性(xing)(xing)(xing);三是降低成本的(de)(de)(de)(de)(de)同時兼顧熔(rong)(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)(chu)能(neng)系(xi)(xi)統(tong)運行(xing)的(de)(de)(de)(de)(de)安全、穩(wen)定性(xing)(xing)(xing),為未來熔(rong)(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)(chu)熱(re)(re)技(ji)術(shu)的(de)(de)(de)(de)(de)應(ying)用(yong)(yong)(yong)發展提(ti)供參(can)考。
隨著全(quan)(quan)球化(hua)石燃(ran)料(liao)資源(yuan)(yuan)(yuan)(yuan)匱(kui)乏(fa)和環境污染(ran)問題日益(yi)凸顯,太陽(yang)能(neng)(neng)(neng)作(zuo)(zuo)為(wei)(wei)(wei)一(yi)種清潔、可(ke)再生的(de)能(neng)(neng)(neng)源(yuan)(yuan)(yuan)(yuan)已被廣泛關注。太陽(yang)能(neng)(neng)(neng)屬于一(yi)次能(neng)(neng)(neng)源(yuan)(yuan)(yuan)(yuan),具有總(zong)量巨大(da)、無(wu)枯竭風(feng)險、清潔無(wu)污染(ran)且分布廣、無(wu)須開采運輸等優點,同時也(ye)具有晝(zhou)夜季節不穩定性(xing)(xing)、地理差異顯著、能(neng)(neng)(neng)量密度低、占(zhan)地面積大(da)、易受天氣影響(xiang)等缺點[1]。光(guang)熱(re)(re)技(ji)(ji)術(shu)(shu)作(zuo)(zuo)為(wei)(wei)(wei)太陽(yang)能(neng)(neng)(neng)利用(yong)的(de)主要(yao)方(fang)式之一(yi),已逐步成為(wei)(wei)(wei)能(neng)(neng)(neng)源(yuan)(yuan)(yuan)(yuan)行(xing)(xing)業(ye)的(de)熱(re)(re)點,目(mu)前光(guang)熱(re)(re)技(ji)(ji)術(shu)(shu)已應(ying)用(yong)于多(duo)個行(xing)(xing)業(ye)。在低溫(wen)<100℃)領(ling)域主要(yao)是(shi)生活供(gong)(gong)暖、供(gong)(gong)熱(re)(re);在中高(gao)溫(wen)(≥100℃)領(ling)域主要(yao)集(ji)中在工農業(ye)方(fang)面,包括紡織、印(yin)染(ran)、造紙、海水淡化(hua)、食品(pin)加工等方(fang)面,同時也(ye)應(ying)用(yong)于新(xin)能(neng)(neng)(neng)源(yuan)(yuan)(yuan)(yuan)聯合發(fa)電領(ling)域[2,3]。儲(chu)能(neng)(neng)(neng)是(shi)助力(li)實(shi)(shi)(shi)現(xian)雙碳目(mu)標的(de)重要(yao)技(ji)(ji)術(shu)(shu)支撐,作(zuo)(zuo)為(wei)(wei)(wei)一(yi)種改(gai)變(bian)能(neng)(neng)(neng)量時空分布的(de)技(ji)(ji)術(shu)(shu)手段,可(ke)以消(xiao)減太陽(yang)能(neng)(neng)(neng)日間變(bian)化(hua)帶(dai)來(lai)(lai)的(de)間歇性(xing)(xing)、不穩定性(xing)(xing)影響(xiang),實(shi)(shi)(shi)現(xian)晝(zhou)夜持續供(gong)(gong)能(neng)(neng)(neng)[4]。2022年,國家發(fa)展(zhan)(zhan)改(gai)革委、國家能(neng)(neng)(neng)源(yuan)(yuan)(yuan)(yuan)局印(yin)發(fa)的(de)《“十四五(wu)”新(xin)型(xing)儲(chu)能(neng)(neng)(neng)發(fa)展(zhan)(zhan)實(shi)(shi)(shi)施方(fang)案》中指(zhi)出,到(dao)2030年新(xin)型(xing)儲(chu)能(neng)(neng)(neng)實(shi)(shi)(shi)現(xian)全(quan)(quan)面市場化(hua)發(fa)展(zhan)(zhan),核心(xin)技(ji)(ji)術(shu)(shu)裝(zhuang)備自主可(ke)控,全(quan)(quan)面支撐能(neng)(neng)(neng)源(yuan)(yuan)(yuan)(yuan)領(ling)域碳達峰目(mu)標如期(qi)實(shi)(shi)(shi)現(xian)[5,6],這將為(wei)(wei)(wei)儲(chu)能(neng)(neng)(neng)型(xing)光(guang)熱(re)(re)發(fa)電/供(gong)(gong)熱(re)(re)技(ji)(ji)術(shu)(shu)帶(dai)來(lai)(lai)重大(da)發(fa)展(zhan)(zhan)機遇。
儲(chu)(chu)(chu)熱(re)(re)(re)(re)(re)技術(包括儲(chu)(chu)(chu)冷)是儲(chu)(chu)(chu)能(neng)(neng)技術中的(de)一種(zhong)。2020年(nian)國際可再生能(neng)(neng)源署(IRENA)報道(dao),截至(zhi)2019年(nian)底,全(quan)球范圍儲(chu)(chu)(chu)熱(re)(re)(re)(re)(re)技術裝機容量約(yue)為(wei)234 GW·h,2030年(nian)將達到2019年(nian)規模(mo)的(de)3倍(bei)[7]。儲(chu)(chu)(chu)熱(re)(re)(re)(re)(re)技術主要應(ying)用在供(gong)(gong)冷、供(gong)(gong)熱(re)(re)(re)(re)(re)以及(ji)電(dian)力方面,其中在電(dian)力領域,隨著光熱(re)(re)(re)(re)(re)發(fa)電(dian)的(de)發(fa)展,主要商用運(yun)行(xing)技術為(wei)熔鹽儲(chu)(chu)(chu)熱(re)(re)(re)(re)(re)。本(ben)文詳(xiang)細介紹了目前主要的(de)儲(chu)(chu)(chu)熱(re)(re)(re)(re)(re)體系分(fen)類,重點梳理了顯熱(re)(re)(re)(re)(re)儲(chu)(chu)(chu)熱(re)(re)(re)(re)(re)方式下的(de)熔鹽儲(chu)(chu)(chu)熱(re)(re)(re)(re)(re)體系研究(jiu)現狀(zhuang),為(wei)光熱(re)(re)(re)(re)(re)利(li)用熔鹽儲(chu)(chu)(chu)熱(re)(re)(re)(re)(re)靈活調(diao)峰和穩定供(gong)(gong)能(neng)(neng)提供(gong)(gong)理論(lun)參考(kao)。
01
儲熱技術現狀
儲熱(re)(re)技術具有能(neng)量密度大、壽命長、利(li)用方式(shi)多樣、綜合熱(re)(re)利(li)用效(xiao)率(lv)高的(de)(de)優點,根據熱(re)(re)能(neng)的(de)(de)存(cun)儲方式(shi)不(bu)同(tong),儲熱(re)(re)技術可分為顯(xian)熱(re)(re)、潛熱(re)(re)和熱(re)(re)化學三類[8,9,10],見圖1。
圖1儲熱技術(shu)分類Fig.1 Classification of thermal storage technologies
1.1顯熱儲熱
顯(xian)(xian)(xian)(xian)熱(re)(re)(re)儲熱(re)(re)(re)基于(yu)介質比熱(re)(re)(re)容,依靠(kao)材料(liao)自身溫度變化(hua)進行儲放熱(re)(re)(re),見(jian)圖2。顯(xian)(xian)(xian)(xian)熱(re)(re)(re)儲熱(re)(re)(re)材料(liao)按照物態(tai)(tai)分為(wei)固(gu)態(tai)(tai)和(he)液(ye)(ye)態(tai)(tai),常(chang)見(jian)的(de)固(gu)態(tai)(tai)顯(xian)(xian)(xian)(xian)熱(re)(re)(re)材料(liao)包(bao)括(kuo)混(hun)凝土、陶瓷(ci)、鵝(e)卵石、氧化(hua)鎂等;常(chang)見(jian)的(de)液(ye)(ye)態(tai)(tai)顯(xian)(xian)(xian)(xian)熱(re)(re)(re)材料(liao)包(bao)括(kuo)水(shui)、導熱(re)(re)(re)油(you)、熔融鹽和(he)液(ye)(ye)態(tai)(tai)金屬等。其(qi)中在低(di)溫(<100℃)應用(yong)領(ling)域中,水(shui)是(shi)最常(chang)見(jian)的(de)顯(xian)(xian)(xian)(xian)熱(re)(re)(re)材料(liao);在中高溫(≥100℃)應用(yong)領(ling)域,導熱(re)(re)(re)油(you)和(he)熔融鹽的(de)應用(yong)案例較多。顯(xian)(xian)(xian)(xian)熱(re)(re)(re)儲熱(re)(re)(re)材料(liao)來源廣泛、成(cheng)本低(di)廉,儲熱(re)(re)(re)技(ji)術(shu)(shu)原理和(he)工(gong)藝簡單,利于(yu)規(gui)模化(hua)應用(yong)。該技(ji)術(shu)(shu)目前(qian)較為(wei)成(cheng)熟,是(shi)應用(yong)最廣泛的(de)儲熱(re)(re)(re)技(ji)術(shu)(shu),但也存(cun)在著儲能(neng)密(mi)度低(di)、儲能(neng)時(shi)(shi)間短、體積龐大、長(chang)時(shi)(shi)儲存(cun)熱(re)(re)(re)損失大等不足。
1.2潛熱儲熱
潛(qian)(qian)熱(re)(re)(re)(re)儲熱(re)(re)(re)(re)又(you)稱為相變(bian)儲熱(re)(re)(re)(re),是指利(li)用(yong)介質相變(bian)過(guo)程中的(de)(de)吸熱(re)(re)(re)(re)和(he)放熱(re)(re)(re)(re)來(lai)進行儲存和(he)釋(shi)放熱(re)(re)(re)(re)能(neng)(neng)的(de)(de)技術(shu),見(jian)(jian)圖2。潛(qian)(qian)熱(re)(re)(re)(re)儲熱(re)(re)(re)(re)材(cai)料按照介質類(lei)型分為四(si)類(lei),包(bao)括無(wu)機(ji)熔融鹽(yan)類(lei)、合(he)金類(lei)、有機(ji)類(lei)和(he)復合(he)類(lei),通常具有儲熱(re)(re)(re)(re)密度高、溫度變(bian)化小的(de)(de)特(te)點(dian)。但不同(tong)種類(lei)潛(qian)(qian)熱(re)(re)(re)(re)儲熱(re)(re)(re)(re)材(cai)料在安全性(xing)和(he)材(cai)料密度方面差異較大(da),其中無(wu)機(ji)熔融鹽(yan)類(lei)由于(yu)其安全性(xing)能(neng)(neng)和(he)材(cai)料成本的(de)(de)優勢,成為高溫應用(yong)領域最常見(jian)(jian)的(de)(de)潛(qian)(qian)熱(re)(re)(re)(re)儲熱(re)(re)(re)(re)材(cai)料。潛(qian)(qian)熱(re)(re)(re)(re)儲熱(re)(re)(re)(re)技術(shu)具有儲能(neng)(neng)周期長、能(neng)(neng)量密度大(da)、熱(re)(re)(re)(re)效率(lv)高和(he)使用(yong)壽命長的(de)(de)優點(dian),但尚未達到商業應用(yong)要求(qiu),還需在儲能(neng)(neng)規模、成本和(he)技術(shu)成熟度上進一(yi)步改善。
圖2顯熱(re)與(yu)潛熱(re)儲熱(re)技術原理Fig.2 Principles of the sensible and latent heat storage technologies
1.3熱化學儲熱
熱(re)(re)化(hua)(hua)學儲(chu)熱(re)(re)主要利用(yong)可(ke)逆的化(hua)(hua)學反應或(huo)(huo)在化(hua)(hua)學吸(xi)(xi)/脫附過程中(zhong)的反應焓來實現儲(chu)/放熱(re)(re),見圖3。熱(re)(re)化(hua)(hua)學儲(chu)熱(re)(re)材(cai)料按(an)照工作溫(wen)度(du)分為(wei)(wei)中(zhong)低溫(wen)和高溫(wen)儲(chu)熱(re)(re)材(cai)料,其(qi)中(zhong)在中(zhong)低溫(wen)領(ling)域,主要是利用(yong)水蒸汽和氨(an)氣作為(wei)(wei)吸(xi)(xi)收或(huo)(huo)吸(xi)(xi)附劑;在高溫(wen)領(ling)域,可(ke)以分為(wei)(wei)金屬氧化(hua)(hua)物(wu)體(ti)系(xi)、金屬氫化(hua)(hua)物(wu)體(ti)系(xi)、金屬氫氧化(hua)(hua)物(wu)體(ti)系(xi)、氧化(hua)(hua)還原體(ti)系(xi)、氨(an)化(hua)(hua)學體(ti)系(xi)、碳(tan)酸鹽體(ti)系(xi)和甲烷重整(zheng)等。熱(re)(re)化(hua)(hua)學儲(chu)熱(re)(re)周期長、能量密(mi)度(du)高,適合大規模儲(chu)熱(re)(re),但在技術成熟度(du)、安全性以及經濟性方面(mian)需(xu)要進(jin)一步改善[11,12,13]。
目前儲(chu)(chu)熱(re)(re)技(ji)術的(de)研究(jiu)熱(re)(re)點(dian)(dian)集中在(zai)(zai)(zai)相變儲(chu)(chu)熱(re)(re)和(he)(he)熱(re)(re)化學儲(chu)(chu)熱(re)(re),但其應(ying)用推廣受(shou)(shou)到材料自身特(te)(te)點(dian)(dian)的(de)制約(yue),特(te)(te)別是(shi)受(shou)(shou)傳熱(re)(re)性(xing)能(neng)差、腐蝕性(xing)強、需要(yao)間接換熱(re)(re)和(he)(he)工(gong)藝(yi)復雜的(de)限制,均處(chu)于中試和(he)(he)實驗室研究(jiu)階段,未有(you)工(gong)業應(ying)用案例(li)。熔(rong)(rong)融(rong)鹽(yan)(yan)(yan)是(shi)指熔(rong)(rong)鹽(yan)(yan)(yan)類(lei)介質的(de)熔(rong)(rong)融(rong)態(tai),是(shi)液態(tai)顯熱(re)(re)儲(chu)(chu)熱(re)(re)的(de)一種(zhong),目前已有(you)大(da)(da)量(liang)工(gong)程應(ying)用案例(li),處(chu)于規模(mo)推廣階段。熔(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)熱(re)(re)具(ju)有(you)使用溫(wen)區(qu)廣、儲(chu)(chu)熱(re)(re)溫(wen)差大(da)(da)、儲(chu)(chu)熱(re)(re)密度高(gao)、傳熱(re)(re)性(xing)能(neng)好、工(gong)作狀態(tai)穩定(ding)、使用壽命(ming)長、成本(ben)低(di)等(deng)(deng)優勢,適合大(da)(da)規模(mo)儲(chu)(chu)熱(re)(re)。基于上述(shu)特(te)(te)點(dian)(dian),熔(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)熱(re)(re)已廣泛應(ying)用到光(guang)熱(re)(re)發電、清潔供(gong)暖、余熱(re)(re)回(hui)收、火(huo)電靈活(huo)性(xing)改(gai)造等(deng)(deng)領域,并在(zai)(zai)(zai)光(guang)熱(re)(re)技(ji)術領域大(da)(da)量(liang)推廣應(ying)用[14,15],見圖4。本(ben)文綜(zong)述(shu)了不同熔(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)熱(re)(re)體系的(de)最新研究(jiu)進展(zhan)和(he)(he)熔(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)熱(re)(re)在(zai)(zai)(zai)光(guang)熱(re)(re)領域的(de)應(ying)用,為未來熔(rong)(rong)鹽(yan)(yan)(yan)儲(chu)(chu)熱(re)(re)技(ji)術的(de)應(ying)用發展(zhan)提供(gong)參(can)考(kao)。
圖(tu)3可逆(ni)熱化學儲熱技術原理Fig.3 Principle of reversible thermochemical heat storage technology
圖4不同應(ying)用場景下熔鹽儲(chu)熱系統Fig.4 Molten salt heat storage systems in different application scenarios
02
熔鹽儲熱技術現狀
目前熔(rong)鹽(yan)(yan)儲熱介質包(bao)括碳(tan)酸鹽(yan)(yan)、氯化鹽(yan)(yan)、氟化鹽(yan)(yan)和硝酸鹽(yan)(yan)[15,16],不同(tong)種(zhong)類熔(rong)鹽(yan)(yan)配方(fang)(fang)多(duo)樣,常見的(de)幾種(zhong)熔(rong)鹽(yan)(yan)熱物性(xing)參數見表(biao)1。尋找綜合性(xing)能最佳的(de)混(hun)合熔(rong)融(rong)鹽(yan)(yan)是目前熔(rong)鹽(yan)(yan)儲熱技術(shu)的(de)重要研究方(fang)(fang)向之一(yi),應從性(xing)能、成本(ben)等多(duo)方(fang)(fang)面因素(su)綜合考慮(lv),優選(xuan)最合適的(de)儲熱熔(rong)鹽(yan)(yan)。
表1常見熔鹽(yan)的熱物性參數Tab.1 Thermophysical parameters of common molten salts
2.1碳酸鹽
碳(tan)酸(suan)(suan)(suan)鹽(yan)(yan)由于具有工作溫(wen)(wen)(wen)度(du)(du)(du)(du)范圍(wei)寬、密度(du)(du)(du)(du)大、溶解(jie)度(du)(du)(du)(du)高(gao)(gao)、腐(fu)蝕性(xing)(xing)小、成(cheng)本低(di)(di)、穩定(ding)性(xing)(xing)高(gao)(gao)等(deng)(deng)特點(dian),主要應用在高(gao)(gao)溫(wen)(wen)(wen)儲(chu)熱(re)(re)技術中(zhong)(zhong)[17]。熔融碳(tan)酸(suan)(suan)(suan)鹽(yan)(yan)的(de)(de)(de)(de)使用溫(wen)(wen)(wen)度(du)(du)(du)(du)高(gao)(gao),適合在中(zhong)(zhong)等(deng)(deng)溫(wen)(wen)(wen)度(du)(du)(du)(du)(500~600℃)和中(zhong)(zhong)高(gao)(gao)溫(wen)(wen)(wen)度(du)(du)(du)(du)(600~800℃)條件下運行(xing),廣泛應用于650℃的(de)(de)(de)(de)熔融碳(tan)酸(suan)(suan)(suan)燃料(liao)電池(MCFC)中(zhong)(zhong)。作為儲(chu)熱(re)(re)介(jie)質的(de)(de)(de)(de)碳(tan)酸(suan)(suan)(suan)鹽(yan)(yan)主要有Li2CO3、Na2CO3、K2CO3、CaCO3、BaCO3等(deng)(deng),其中(zhong)(zhong)單(dan)(dan)一和二元(yuan)碳(tan)酸(suan)(suan)(suan)鹽(yan)(yan)混(hun)合物(wu)的(de)(de)(de)(de)熔點(dian)一般高(gao)(gao)于500℃[18]。Wu等(deng)(deng)[19]研究了(le)36種不同比(bi)例的(de)(de)(de)(de)Li、Na、K三(san)(san)(san)(san)(san)元(yuan)碳(tan)酸(suan)(suan)(suan)熔融鹽(yan)(yan)的(de)(de)(de)(de)基(ji)本熱(re)(re)物(wu)理性(xing)(xing)質(包括熔點(dian)、比(bi)熱(re)(re)和分(fen)(fen)解(jie)溫(wen)(wen)(wen)度(du)(du)(du)(du)等(deng)(deng)),結(jie)果表(biao)(biao)明(ming)三(san)(san)(san)(san)(san)元(yuan)混(hun)合鹽(yan)(yan)的(de)(de)(de)(de)熔點(dian)在500℃以下,并且(qie)富含K2CO3的(de)(de)(de)(de)三(san)(san)(san)(san)(san)元(yuan)混(hun)合鹽(yan)(yan)表(biao)(biao)現(xian)(xian)(xian)出(chu)比(bi)Solar salt高(gao)(gao)出(chu)三(san)(san)(san)(san)(san)倍多的(de)(de)(de)(de)比(bi)熱(re)(re)值,高(gao)(gao)達1 343 J/(kg·K)。Luo等(deng)(deng)[20]研究了(le)Li、Na、K三(san)(san)(san)(san)(san)元(yuan)碳(tan)酸(suan)(suan)(suan)熔融鹽(yan)(yan)(32.1%Li2CO3+33.4%Na2CO3+34.5%K2CO3(wt%))的(de)(de)(de)(de)熱(re)(re)物(wu)性(xing)(xing),認為該碳(tan)酸(suan)(suan)(suan)鹽(yan)(yan)是最具競(jing)爭力(li)的(de)(de)(de)(de)高(gao)(gao)溫(wen)(wen)(wen)顯熱(re)(re)儲(chu)熱(re)(re)介(jie)質,同時該鹽(yan)(yan)也被美國國家(jia)可再(zai)生能(neng)源實驗(yan)室(NREL)認為是第三(san)(san)(san)(san)(san)代光熱(re)(re)CSP系統中(zhong)(zhong)可用來替代硝(xiao)酸(suan)(suan)(suan)鹽(yan)(yan)的(de)(de)(de)(de)潛(qian)在高(gao)(gao)溫(wen)(wen)(wen)傳熱(re)(re)儲(chu)熱(re)(re)材料(liao),表(biao)(biao)現(xian)(xian)(xian)出(chu)熱(re)(re)容量(liang)高(gao)(gao)(1 610 J/(kg·K)、熱(re)(re)導(dao)率(lv)高(gao)(gao)(0.612 W/(m·k)(575℃))、熔點(dian)低(di)(di)(397℃)、熱(re)(re)分(fen)(fen)解(jie)溫(wen)(wen)(wen)度(du)(du)(du)(du)較高(gao)(gao)(>670℃)的(de)(de)(de)(de)熱(re)(re)物(wu)性(xing)(xing)。楊薛明(ming)等(deng)(deng)[21]對(dui)Li、Na、K碳(tan)酸(suan)(suan)(suan)熔融鹽(yan)(yan)單(dan)(dan)組分(fen)(fen)、二元(yuan)及三(san)(san)(san)(san)(san)元(yuan)混(hun)合物(wu)進行(xing)分(fen)(fen)子動力(li)學(xue)研究發現(xian)(xian)(xian),隨著溫(wen)(wen)(wen)度(du)(du)(du)(du)升高(gao)(gao),離子間距(ju)增加,單(dan)(dan)組分(fen)(fen)及混(hun)合物(wu)的(de)(de)(de)(de)黏度(du)(du)(du)(du)呈現(xian)(xian)(xian)負溫(wen)(wen)(wen)度(du)(du)(du)(du)依賴性(xing)(xing),單(dan)(dan)組分(fen)(fen)和二元(yuan)混(hun)合物(wu)的(de)(de)(de)(de)熱(re)(re)導(dao)率(lv)也呈負溫(wen)(wen)(wen)度(du)(du)(du)(du)依賴性(xing)(xing),而三(san)(san)(san)(san)(san)元(yuan)熔鹽(yan)(yan)的(de)(de)(de)(de)熱(re)(re)導(dao)率(lv)則呈溫(wen)(wen)(wen)度(du)(du)(du)(du)正相關性(xing)(xing)。
2.2氯化鹽
氯(lv)(lv)化(hua)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)種(zhong)類繁多,價格低(di)(di)廉,近年主要研究(jiu)集(ji)中(zhong)(zhong)(zhong)在(zai)(zai)(zai)Li、Na、K、Mg、Ca、Zn等(deng)氯(lv)(lv)化(hua)物(wu)的(de)(de)(de)(de)(de)(de)(de)混(hun)(hun)合(he)(he)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)開發上[18]。氯(lv)(lv)化(hua)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)具有(you)熱(re)穩(wen)定性(xing)好、熔(rong)(rong)(rong)融狀態(tai)黏度(du)(du)小、工(gong)作溫度(du)(du)范圍寬等(deng)特點(dian)(dian),但熔(rong)(rong)(rong)點(dian)(dian)較高(gao),其(qi)中(zhong)(zhong)(zhong)Li、Na、K、Ca氯(lv)(lv)化(hua)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)的(de)(de)(de)(de)(de)(de)(de)熔(rong)(rong)(rong)點(dian)(dian)分別為605℃、801℃、770℃、782℃;氯(lv)(lv)化(hua)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)腐(fu)蝕(shi)性(xing)強,熔(rong)(rong)(rong)融氯(lv)(lv)化(hua)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)會加(jia)速(su)合(he)(he)金鋼在(zai)(zai)(zai)空氣中(zhong)(zhong)(zhong)的(de)(de)(de)(de)(de)(de)(de)腐(fu)蝕(shi)速(su)率,增(zeng)加(jia)了抗腐(fu)蝕(shi)的(de)(de)(de)(de)(de)(de)(de)應(ying)用(yong)成本[22]。熔(rong)(rong)(rong)融的(de)(de)(de)(de)(de)(de)(de)混(hun)(hun)合(he)(he)氯(lv)(lv)化(hua)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)常被(bei)用(yong)作核反應(ying)堆中(zhong)(zhong)(zhong)的(de)(de)(de)(de)(de)(de)(de)冷(leng)卻劑,其(qi)熱(re)流體可在(zai)(zai)(zai)約(yue)525℃下(xia)長時間運行,并且(qie)在(zai)(zai)(zai)800℃左(zuo)右的(de)(de)(de)(de)(de)(de)(de)溫度(du)(du)下(xia)也能保持穩(wen)定。三元(yuan)(yuan)MgCl2-NaCl-KCl熔(rong)(rong)(rong)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)具有(you)與(yu)商業熔(rong)(rong)(rong)融硝酸鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)相(xiang)似的(de)(de)(de)(de)(de)(de)(de)熱(re)物(wu)性(xing)、更(geng)高(gao)的(de)(de)(de)(de)(de)(de)(de)熱(re)穩(wen)定性(xing)(>800℃)和更(geng)低(di)(di)的(de)(de)(de)(de)(de)(de)(de)材料(liao)成本(<0.35 USD/kg),適合(he)(he)下(xia)一代(dai)光熱(re)電站(zhan)更(geng)高(gao)運行溫度(du)(du)(>565℃)的(de)(de)(de)(de)(de)(de)(de)需(xu)求[23]。孫李平[24]選擇熔(rong)(rong)(rong)點(dian)(dian)較高(gao)的(de)(de)(de)(de)(de)(de)(de)MgCl2、NaCl和KCl作為原料(liao),實驗不同比例(li)共(gong)計36種(zhong)混(hun)(hun)合(he)(he)氯(lv)(lv)化(hua)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)的(de)(de)(de)(de)(de)(de)(de)特性(xing),其(qi)中(zhong)(zhong)(zhong)MgCl2∶NaCl∶KCl為2∶7∶1時,熔(rong)(rong)(rong)點(dian)(dian)低(di)(di)至(zhi)約(yue)400℃,顯熱(re)儲熱(re)時經濟性(xing)最好。Wei等(deng)[25]在(zai)(zai)(zai)三元(yuan)(yuan)NaCl-MgCl2-CaCl2混(hun)(hun)合(he)(he)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)基礎上研究(jiu)更(geng)低(di)(di)熔(rong)(rong)(rong)點(dian)(dian)混(hun)(hun)合(he)(he)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan),原混(hun)(hun)合(he)(he)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)的(de)(de)(de)(de)(de)(de)(de)熔(rong)(rong)(rong)點(dian)(dian)為407℃,加(jia)入(ru)KCl以部(bu)分取代(dai)CaCl2,可將(jiang)混(hun)(hun)合(he)(he)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)熔(rong)(rong)(rong)點(dian)(dian)降低(di)(di)至(zhi)383℃。Li等(deng)[26]研究(jiu)了含有(you)ZnCl2的(de)(de)(de)(de)(de)(de)(de)低(di)(di)熔(rong)(rong)(rong)點(dian)(dian)混(hun)(hun)合(he)(he)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan),其(qi)中(zhong)(zhong)(zhong)NaCl-KCl-ZnCl2三元(yuan)(yuan)混(hun)(hun)合(he)(he)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)的(de)(de)(de)(de)(de)(de)(de)共(gong)晶熔(rong)(rong)(rong)點(dian)(dian)低(di)(di)至(zhi)204℃,但ZnCl2的(de)(de)(de)(de)(de)(de)(de)高(gao)成本制約(yue)了其(qi)混(hun)(hun)合(he)(he)鹽(yan)(yan)(yan)(yan)(yan)(yan)(yan)的(de)(de)(de)(de)(de)(de)(de)發展。
2.3氟化鹽
氟(fu)(fu)化鹽(yan)具有(you)(you)高(gao)(gao)熔(rong)(rong)點(dian)和高(gao)(gao)潛熱特(te)點(dian),常見(jian)的(de)(de)二元、三元混合(he)熔(rong)(rong)鹽(yan)熔(rong)(rong)點(dian)在315~509℃,屬(shu)(shu)于高(gao)(gao)溫(wen)儲熱材(cai)料,但相(xiang)變體(ti)(ti)積變化大,當(dang)由液體(ti)(ti)轉變為(wei)固體(ti)(ti)時體(ti)(ti)積會有(you)(you)大幅收(shou)縮,導(dao)熱系數(shu)低。氟(fu)(fu)化鹽(yan)由于具有(you)(you)較強的(de)(de)腐蝕性(xing)(xing)和毒性(xing)(xing),在光熱領(ling)域(yu)中的(de)(de)應(ying)(ying)用并不多,且無很好(hao)的(de)(de)解(jie)決方(fang)法,應(ying)(ying)用前景(jing)并不理想,目前熔(rong)(rong)融氟(fu)(fu)化鹽(yan)主要被應(ying)(ying)用作(zuo)為(wei)冶金、電(dian)解(jie)和核反應(ying)(ying)堆(dui)的(de)(de)冷卻(que)(que)劑(ji)[22]。氟(fu)(fu)化物熔(rong)(rong)鹽(yan)電(dian)解(jie)質與水(shui)溶(rong)液電(dian)解(jie)質相(xiang)比(bi),化學(xue)性(xing)(xing)質更(geng)穩定,電(dian)化學(xue)窗口(kou)更(geng)寬(kuan),可以用于電(dian)解(jie)制備金屬(shu)(shu)鋁、高(gao)(gao)純(chun)硅(gui)以及含氟(fu)(fu)的(de)(de)特(te)種氣體(ti)(ti);在核工業(ye)方(fang)面(mian),氟(fu)(fu)化鹽(yan)LiF-BeF2、LiF-NaF-KF等在高(gao)(gao)溫(wen)下(xia)具有(you)(you)優異的(de)(de)物化性(xing)(xing)質,廣泛應(ying)(ying)用為(wei)核燃料溶(rong)劑(ji)及冷卻(que)(que)劑(ji)[27]。
2.4硝酸鹽
混(hun)(hun)合(he)硝(xiao)酸(suan)鹽具(ju)有(you)(you)熔點低(di)、比熱(re)(re)容(rong)大(da)(da)、導熱(re)(re)系數大(da)(da)、低(di)黏(nian)度(du)、低(di)蒸汽壓(ya)以及(ji)分解(jie)溫度(du)高、腐蝕性小等(deng)優點,常用(yong)于(yu)光熱(re)(re)電站(zhan),也是(shi)目前(qian)己實現(xian)商業應用(yong)的(de)(de)傳(chuan)熱(re)(re)儲(chu)熱(re)(re)材料。硝(xiao)酸(suan)鹽熔點為(wei)(wei)300℃左右,500℃下不易(yi)分解(jie),價格低(di)廉,但其熱(re)(re)導率低(di),易(yi)發(fa)生局(ju)部(bu)過熱(re)(re),容(rong)易(yi)凝固(gu)、導致堵塞管道[16]。目前(qian)商業化(hua)的(de)(de)硝(xiao)酸(suan)熔鹽主要有(you)(you):Solar salt(60%NaNO3+40%KNO3)、Hitec(7%NaNO3+53%KNO3+40%Na NO2)、Hitec XL(7%Na NO3+45%KNO3+48%Ca(NO3)2),使用(yong)溫度(du)范圍分別為(wei)(wei):220~600℃、142~535℃、120~500℃。鄒露璐(lu)等(deng)[28]開發(fa)了一種低(di)熔點(83.1℃)四元混(hun)(hun)合(he)硝(xiao)酸(suan)鹽,由于(yu)熔點較低(di),在光熱(re)(re)發(fa)電應用(yong)中(zhong)大(da)(da)幅減(jian)少了系統(tong)初(chu)始化(hua)鹽的(de)(de)能耗,降低(di)了運行(xing)過程中(zhong)管路凍(dong)堵風險,同(tong)時由于(yu)該鹽比熱(re)(re)相對較高,液態溫域較寬(kuan),也可有(you)(you)效降低(di)儲(chu)熱(re)(re)運行(xing)成本。王(wang)軍濤等(deng)[29]研究了NaNO3-KNO3-Ca(NO3)2三元混(hun)(hun)合(he)硝(xiao)酸(suan)鹽的(de)(de)熱(re)(re)力學性質,其熔點為(wei)(wei)122.05℃,工作范圍127~500℃。
03
熔鹽儲熱在光熱領域的技術現狀
熔(rong)鹽儲(chu)熱(re)(re)技(ji)術最(zui)早作(zuo)為核反應(ying)堆的冷卻介(jie)質應(ying)用(yong)(yong)在核工業(ye)領(ling)域,在工作(zuo)溫(wen)度(du)區間,以液(ye)態形式進行(xing)傳(chuan)熱(re)(re)、儲(chu)熱(re)(re)。自上(shang)世紀(ji)80年代開始,美國發展光(guang)(guang)熱(re)(re)發電(dian)技(ji)術,率先使(shi)用(yong)(yong)熔(rong)鹽儲(chu)熱(re)(re)技(ji)術并用(yong)(yong)于美國太陽二號(Solar Two)光(guang)(guang)熱(re)(re)發電(dian)項目,該電(dian)站是(shi)世界上(shang)第一個使(shi)用(yong)(yong)熔(rong)鹽作(zuo)為儲(chu)熱(re)(re)、傳(chuan)熱(re)(re)介(jie)質的光(guang)(guang)熱(re)(re)電(dian)站。目前(qian)熔(rong)鹽儲(chu)熱(re)(re)技(ji)術已成(cheng)功(gong)應(ying)用(yong)(yong)于多個國內(nei)外光(guang)(guang)熱(re)(re)電(dian)站及(ji)儲(chu)能系統中。
2016年9月,國(guo)(guo)家能源局印發(fa)(fa)了《關于建(jian)設(she)太(tai)陽能熱(re)(re)(re)發(fa)(fa)電(dian)(dian)(dian)示(shi)范項(xiang)(xiang)目(mu)(mu)(mu)(mu)的通知》(國(guo)(guo)能新能[2016]223號),確定第一批太(tai)陽能熱(re)(re)(re)發(fa)(fa)電(dian)(dian)(dian)示(shi)范項(xiang)(xiang)目(mu)(mu)(mu)(mu)共(gong)(gong)(gong)20個(ge)[30],至2022年,并網投運光(guang)熱(re)(re)(re)發(fa)(fa)電(dian)(dian)(dian)示(shi)范項(xiang)(xiang)目(mu)(mu)(mu)(mu)共(gong)(gong)(gong)9個(ge),總容量55×104kW。其中(zhong),塔(ta)(ta)式(shi)(shi)項(xiang)(xiang)目(mu)(mu)(mu)(mu)6個(ge)、槽式(shi)(shi)項(xiang)(xiang)目(mu)(mu)(mu)(mu)2個(ge)、線菲(fei)式(shi)(shi)1個(ge);使(shi)用熔(rong)(rong)(rong)鹽(yan)(yan)儲熱(re)(re)(re)項(xiang)(xiang)目(mu)(mu)(mu)(mu)共(gong)(gong)(gong)計6個(ge),包(bao)括青(qing)海中(zhong)控德令(ling)哈(ha)50 MW熔(rong)(rong)(rong)鹽(yan)(yan)塔(ta)(ta)式(shi)(shi)熱(re)(re)(re)發(fa)(fa)電(dian)(dian)(dian)項(xiang)(xiang)目(mu)(mu)(mu)(mu)、北京首航(hang)敦(dun)煌100 MW熔(rong)(rong)(rong)鹽(yan)(yan)塔(ta)(ta)式(shi)(shi)熱(re)(re)(re)發(fa)(fa)電(dian)(dian)(dian)示(shi)范項(xiang)(xiang)目(mu)(mu)(mu)(mu)、中(zhong)國(guo)(guo)電(dian)(dian)(dian)建(jian)共(gong)(gong)(gong)和50 MW熔(rong)(rong)(rong)鹽(yan)(yan)塔(ta)(ta)式(shi)(shi)熱(re)(re)(re)發(fa)(fa)電(dian)(dian)(dian)項(xiang)(xiang)目(mu)(mu)(mu)(mu)、中(zhong)國(guo)(guo)電(dian)(dian)(dian)力工程哈(ha)密50 MW熔(rong)(rong)(rong)鹽(yan)(yan)塔(ta)(ta)式(shi)(shi)熱(re)(re)(re)發(fa)(fa)電(dian)(dian)(dian)項(xiang)(xiang)目(mu)(mu)(mu)(mu)、玉門鑫能50 MW熔(rong)(rong)(rong)鹽(yan)(yan)塔(ta)(ta)式(shi)(shi)熱(re)(re)(re)發(fa)(fa)電(dian)(dian)(dian)項(xiang)(xiang)目(mu)(mu)(mu)(mu)和蘭州大(da)成敦(dun)煌50 MW熔(rong)(rong)(rong)鹽(yan)(yan)線性(xing)菲(fei)涅(nie)爾式(shi)(shi)熱(re)(re)(re)發(fa)(fa)電(dian)(dian)(dian)項(xiang)(xiang)目(mu)(mu)(mu)(mu)[31]。
光(guang)(guang)(guang)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)發電(dian)(dian)對(dui)比常(chang)規新能(neng)(neng)源的(de)(de)風(feng)電(dian)(dian)、光(guang)(guang)(guang)伏,具有持續發電(dian)(dian)、對(dui)電(dian)(dian)網(wang)沖擊小的(de)(de)優點,對(dui)新型電(dian)(dian)力(li)系統(tong)的(de)(de)構(gou)成具有重(zhong)要(yao)支撐作(zuo)(zuo)(zuo)(zuo)用(yong)。光(guang)(guang)(guang)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)電(dian)(dian)站利(li)用(yong)集熱(re)(re)(re)(re)(re)(re)(re)(re)(re)器將光(guang)(guang)(guang)以(yi)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)形(xing)式儲(chu)存(cun)在(zai)液態(tai)熔(rong)鹽(yan)(yan)(yan)(yan)(yan)中,再利(li)用(yong)熔(rong)鹽(yan)(yan)(yan)(yan)(yan)加熱(re)(re)(re)(re)(re)(re)(re)(re)(re)水形(xing)成熱(re)(re)(re)(re)(re)(re)(re)(re)(re)蒸汽(qi)(qi)驅(qu)動汽(qi)(qi)輪機發電(dian)(dian)。熔(rong)鹽(yan)(yan)(yan)(yan)(yan)供熱(re)(re)(re)(re)(re)(re)(re)(re)(re)系統(tong)直(zhi)接利(li)用(yong)光(guang)(guang)(guang)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)或綠(lv)電(dian)(dian)供能(neng)(neng),采用(yong)太陽(yang)能(neng)(neng)-熔(rong)鹽(yan)(yan)(yan)(yan)(yan)-給(gei)水或綠(lv)電(dian)(dian)-熔(rong)鹽(yan)(yan)(yan)(yan)(yan)-給(gei)水換熱(re)(re)(re)(re)(re)(re)(re)(re)(re),熔(rong)鹽(yan)(yan)(yan)(yan)(yan)使用(yong)溫(wen)度(du)(du)(du)區(qu)間(jian)根據用(yong)能(neng)(neng)側配置,可實現(xian)90℃熱(re)(re)(re)(re)(re)(re)(re)(re)(re)水實現(xian)生活供暖、180~360℃的(de)(de)中低(di)(di)溫(wen)工業蒸汽(qi)(qi)以(yi)及(ji)500℃以(yi)上的(de)(de)高溫(wen)蒸汽(qi)(qi)[32]。光(guang)(guang)(guang)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)系統(tong)中熔(rong)鹽(yan)(yan)(yan)(yan)(yan)廣泛使用(yong)二元Solar salt,溫(wen)度(du)(du)(du)使用(yong)范圍(wei)220~600℃,并已商(shang)業應(ying)用(yong)以(yi)Hitec為(wei)(wei)(wei)代表(biao)的(de)(de)低(di)(di)熔(rong)點三(san)元熔(rong)鹽(yan)(yan)(yan)(yan)(yan),低(di)(di)熔(rong)點鹽(yan)(yan)(yan)(yan)(yan)維溫(wen)系統(tong)能(neng)(neng)耗小,管路凍堵風(feng)險小,也是目(mu)前不同熔(rong)鹽(yan)(yan)(yan)(yan)(yan)配方的(de)(de)主要(yao)研究方向(xiang)之一。熔(rong)鹽(yan)(yan)(yan)(yan)(yan)儲(chu)罐有單(dan)罐和雙(shuang)(shuang)罐兩(liang)種,其(qi)中單(dan)罐通過(guo)斜(xie)溫(wen)層將冷熱(re)(re)(re)(re)(re)(re)(re)(re)(re)流分(fen)(fen)層,最大限度(du)(du)(du)利(li)用(yong)單(dan)個儲(chu)罐降低(di)(di)初(chu)始投資(zi),但斜(xie)溫(wen)層的(de)(de)存(cun)在(zai)嚴重(zhong)影響了儲(chu)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)效率,且上下層流體之間(jian)溫(wen)差、流速等運(yun)行控制難度(du)(du)(du)大[33],見(jian)(jian)圖5;雙(shuang)(shuang)罐系統(tong)將高、低(di)(di)溫(wen)熔(rong)鹽(yan)(yan)(yan)(yan)(yan)分(fen)(fen)別放在(zai)兩(liang)個罐中儲(chu)存(cun),避免了斜(xie)溫(wen)層問(wen)題,降低(di)(di)了安全隱患(huan),提高了系統(tong)儲(chu)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)效率,但增加了投資(zi)成本,目(mu)前該技術成熟,已商(shang)業化(hua)應(ying)用(yong)于(yu)工程案例(li)中,見(jian)(jian)圖6。光(guang)(guang)(guang)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)與熔(rong)鹽(yan)(yan)(yan)(yan)(yan)耦合的(de)(de)換熱(re)(re)(re)(re)(re)(re)(re)(re)(re)形(xing)式分(fen)(fen)直(zhi)接和間(jian)接,其(qi)中直(zhi)接儲(chu)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)系統(tong)將熔(rong)鹽(yan)(yan)(yan)(yan)(yan)同時作(zuo)(zuo)(zuo)(zuo)為(wei)(wei)(wei)儲(chu)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)介(jie)(jie)質和傳熱(re)(re)(re)(re)(re)(re)(re)(re)(re)介(jie)(jie)質,經過(guo)太陽(yang)能(neng)(neng)-熔(rong)鹽(yan)(yan)(yan)(yan)(yan)-蒸汽(qi)(qi)進行轉化(hua),工作(zuo)(zuo)(zuo)(zuo)溫(wen)度(du)(du)(du)在(zai)400~500℃范圍(wei),見(jian)(jian)圖7;間(jian)接儲(chu)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)系統(tong)將導熱(re)(re)(re)(re)(re)(re)(re)(re)(re)油作(zuo)(zuo)(zuo)(zuo)為(wei)(wei)(wei)傳熱(re)(re)(re)(re)(re)(re)(re)(re)(re)介(jie)(jie)質,熔(rong)鹽(yan)(yan)(yan)(yan)(yan)作(zuo)(zuo)(zuo)(zuo)為(wei)(wei)(wei)儲(chu)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)介(jie)(jie)質,換熱(re)(re)(re)(re)(re)(re)(re)(re)(re)過(guo)程為(wei)(wei)(wei)太陽(yang)能(neng)(neng)-導熱(re)(re)(re)(re)(re)(re)(re)(re)(re)油-熔(rong)鹽(yan)(yan)(yan)(yan)(yan)-蒸汽(qi)(qi),由于(yu)導熱(re)(re)(re)(re)(re)(re)(re)(re)(re)油的(de)(de)熱(re)(re)(re)(re)(re)(re)(re)(re)(re)穩(wen)定性相(xiang)對(dui)較(jiao)低(di)(di),工作(zuo)(zuo)(zuo)(zuo)溫(wen)度(du)(du)(du)在(zai)400℃以(yi)下[32],見(jian)(jian)圖8。
圖5單罐熔(rong)鹽(yan)儲熱系統(tong)Fig.5 Single-tank molten salt heat storage system
圖6雙罐熔鹽儲熱系(xi)統(tong)Fig.6 Double-tank molten salt heat storage system
圖7熔鹽儲(chu)熱(re)在光(guang)熱(re)應用中(zhong)直接換(huan)熱(re)系統Fig.7 Direct heat transfer system ofmolten salt heat storage in photothermal applications
圖8熔(rong)鹽儲熱(re)在光熱(re)應用中間接換(huan)熱(re)系統Fig.8 Indirect heat transfer system of molten salt heat storage in photothermal applications
04
熔鹽儲熱在光熱領域的發展趨勢
熔(rong)鹽儲熱(re)(re)在(zai)光(guang)(guang)熱(re)(re)電(dian)站和(he)光(guang)(guang)熱(re)(re)儲能(neng)供熱(re)(re)領域的推(tui)廣(guang)應用,經(jing)濟(ji)性、適(shi)用性和(he)安全性是制約技(ji)術發(fa)展的重要(yao)因素,需在(zai)系統容量配置、熔(rong)鹽材料及配方(fang)研發(fa)等方(fang)面進(jin)行(xing)攻關(guan)。
1)根據新能(neng)(neng)源(yuan)基(ji)地的(de)(de)功能(neng)(neng)需求,選擇(ze)合適(shi)的(de)(de)光熱集熱方式,優化光熱集熱、熔鹽儲(chu)熱的(de)(de)容量配置(zhi)和協調控制(zhi)(zhi)[34],研(yan)究與現有(you)電價機制(zhi)(zhi)的(de)(de)有(you)效銜(xian)接,拓寬應(ying)用場景,在光熱發電、儲(chu)能(neng)(neng)調峰、園區高品質工業(ye)蒸(zheng)汽(qi)供(gong)應(ying)、熱電聯(lian)產、清潔供(gong)熱等領域加快(kuai)推廣。
2)為提(ti)高熔(rong)(rong)(rong)(rong)鹽儲(chu)熱的(de)(de)適用(yong)性,需研發更低(di)熔(rong)(rong)(rong)(rong)點、更寬(kuan)(kuan)液(ye)體(ti)溫(wen)域、低(di)腐(fu)(fu)蝕(shi)性的(de)(de)熔(rong)(rong)(rong)(rong)鹽,用(yong)以(yi)解(jie)決冬季熔(rong)(rong)(rong)(rong)鹽“凍管”所引(yin)起的(de)(de)系統失效問題,降低(di)熔(rong)(rong)(rong)(rong)鹽系統維溫(wen)能(neng)耗,減緩熔(rong)(rong)(rong)(rong)鹽罐(guan)、管道腐(fu)(fu)蝕(shi),同時為進(jin)一步提(ti)高熔(rong)(rong)(rong)(rong)鹽儲(chu)熱效率,應對變工況條件下拓寬(kuan)(kuan)熔(rong)(rong)(rong)(rong)鹽使用(yong)溫(wen)度(du)區間開(kai)展研究,以(yi)提(ti)高熔(rong)(rong)(rong)(rong)鹽循環效率。
3)降低成本的(de)(de)(de)同時兼(jian)顧熔鹽儲(chu)能系(xi)(xi)統運(yun)行的(de)(de)(de)安全(quan)性(xing)(xing)、穩定性(xing)(xing),開(kai)發具有(you)更高可靠性(xing)(xing)的(de)(de)(de)儲(chu)能系(xi)(xi)統設備(bei)和(he)操作系(xi)(xi)統,包括高電壓等級熔鹽電加熱器(qi)、熔鹽換熱器(qi)、儲(chu)罐(guan)、動(dong)力(li)循環系(xi)(xi)統等。完善相關制(zhi)造標(biao)準和(he)運(yun)維(wei)操作規范,細化行業規范評價體系(xi)(xi),加強技術(shu)配套,促進(jin)推廣應(ying)用(yong)。
05
總結與展望
1)在雙碳目標背景下,隨(sui)著清潔轉型的(de)不(bu)斷推進,儲熱(re)技術可(ke)以有效解(jie)決(jue)熱(re)能供(gong)應側與(yu)需求側在時(shi)間(jian)、空間(jian)上的(de)一致性問題(ti),提高新型能源體系的(de)靈活(huo)性和穩定性,提升能源綜合(he)利用率。通過不(bu)同形(xing)(xing)式(shi)儲熱(re)技術,可(ke)形(xing)(xing)成(cheng)不(bu)同溫度范圍、不(bu)同時(shi)間(jian)周(zhou)期、不(bu)同儲熱(re)規模的(de)解(jie)決(jue)方(fang)案。
2)熔鹽儲熱(re)(re)是(shi)顯熱(re)(re)儲熱(re)(re)的(de)一(yi)種,具有儲能(neng)容量大、儲存周期長、成本(ben)(ben)低等優(you)點(dian),可推動大規模(mo)儲能(neng)項目落地。熔鹽儲熱(re)(re)相(xiang)關技術發展多(duo)樣化(hua),針對(dui)不同儲熱(re)(re)場景,為實現規模(mo)化(hua)應用(yong),儲熱(re)(re)材(cai)料的(de)制備方法和性(xing)(xing)能(neng)研(yan)究是(shi)目前的(de)主要方向(xiang)。為提(ti)高系統效(xiao)率、降低成本(ben)(ben),研(yan)究重點(dian)集中在優(you)選(xuan)工作溫度范圍寬(kuan)、適應性(xing)(xing)強、成本(ben)(ben)低的(de)多(duo)元混合(he)熔鹽儲熱(re)(re)材(cai)料上。
3)目前熔鹽儲熱(re)(re)技術中(zhong),最常見的是硝(xiao)酸(suan)鹽。新疆地處高(gao)緯度(du)地區(qu),冬(dong)夏(xia)晝夜溫(wen)差大(da),為(wei)匹配高(gao)寒地區(qu)光熱(re)(re)應用場景,應選擇熔點(dian)相對(dui)更低的Hitec、Hitec XL。在進入(ru)第(di)三代(dai)光熱(re)(re)發展過(guo)程中(zhong),碳(tan)酸(suan)鹽體(ti)系(xi)和(he)氯化鹽體(ti)系(xi)由于具有熔點(dian)高(gao)、工(gong)作溫(wen)度(du)范圍寬、成本低等(deng)特(te)性,可成為(wei)用來替代(dai)硝(xiao)酸(suan)鹽的潛在高(gao)溫(wen)傳熱(re)(re)儲熱(re)(re)材料。
4)針對(dui)光熱(re)(re)(re)發(fa)電(dian)和(he)供熱(re)(re)(re)領域,熔(rong)鹽(yan)作(zuo)為儲熱(re)(re)(re)傳熱(re)(re)(re)介質具有工(gong)程應(ying)用潛力。隨著風(feng)電(dian)光伏(fu)等(deng)新能源(yuan)電(dian)力規模不(bu)斷增(zeng)加,為減(jian)少棄風(feng)棄光率,可加快(kuai)風(feng)光儲一體(ti)化建(jian)設,探討(tao)熔(rong)鹽(yan)儲熱(re)(re)(re)的(de)工(gong)業化應(ying)用可行性。根據清潔供暖的(de)實施(shi)推廣(guang),也將持續開展光熱(re)(re)(re)或綠電(dian)供能加熱(re)(re)(re)熔(rong)鹽(yan)儲熱(re)(re)(re)/換(huan)熱(re)(re)(re)的(de)研究,適(shi)時布局(ju)熔(rong)鹽(yan)供熱(re)(re)(re)市場。
本文作者 | 段勝男 馬能(neng)亮 陳香(xiang)玉 段子(zi)丹 陳柏榮(rong) 王志強
來源 | 新疆石油天(tian)然氣(qi)
參考資料:
[1]姚玉(yu)璧,鄭紹忠,楊揚,等(deng).中國(guo)太(tai)陽(yang)能資源評估及(ji)其利用效率研究進展與(yu)展望(wang)[J].太(tai)陽(yang)能學報,2022,43(10):524-535.YAO Y B,ZHENG S Z,YANG Y,et al.Research progress and prospect on solar energy resource evaluation and utilization efficiency in China[J].Acta Energiae Solaris Sinica,2022,43(10):524-535.
[2]孫峰,畢文劍,周(zhou)楷,等.太(tai)陽能(neng)熱利(li)用技(ji)術分析與前景展望[J].太(tai)陽能(neng),2021,(7):23-36.SUN F,BI W J,ZHOU K,et al.Analysis and prospect of solar thermal utilization techonlogies[J].Solar energy,2021,(7):23-36.
[3]杜運(yun)平,陳(chen)宇超(chao),沙暢暢,等.基(ji)于太陽能驅動水蒸(zheng)發的系統(tong)設計及研究進展[J].遼(liao)寧石油(you)化工大學(xue)學(xue)報(bao),2020,40(5):33-38.DU Y P,CHEN Y C,SHA C C,et al.System design and research progress based on solar drive water evaporation[J].Journal of Liaoning Shihua University,2020,40(5):33-38.
[4]毛翠驥,余雄江,徐進良,等.耦合熔融鹽儲熱(re)的火(huo)電機組靈活調峰系統關鍵技(ji)術研究進展[J].熱(re)力發電,2023,52(2):10-22.MAO C J,YU X J,XU J L,et al.Research progress on key technologies of flexible peak shaving system of thermal power unit coupled with molten salt heat storage[J].Thermal Power Generation,2023,52(2):10-22.
[5]國家發展改革委、國家能源局.“十四五”新型儲能發展實施方案[EB/OL].(2022-1-29)[2023-12-30].http://zfxxgk.nea.gov.cn/2022-01/29/c_1310523208.htm.National Development and Reform Commission,National Energy Administration.Implementation plan for the development of new energy storage in the"14th Five-Year Plan"[EB/OL].(2022-1-29)[2023-12-30].http://zfxxgk.nea.gov.cn/2022-01/29/c_1310523208.htm.
[6]鄭瓊,江麗霞,徐玉杰(jie),等.碳達峰、碳中和背景下儲(chu)能技術研究進展與發(fa)展建議[J].中國科學院(yuan)院(yuan)刊,2022,37(4):529-540.ZHENG Q,JIANG L X,XU Y J,et al.Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J].Bulletin of Chinese Academy of Sciences,2022,37(4):529-540.
[7]Innovation outlook:Thermal energy storage[R].International Renewable Energy Agency,2020.
[8]陳海生,李泓(hong),徐玉杰,等.2022年中國儲(chu)能技術(shu)研究進展[J].儲(chu)能科(ke)學與(yu)技術(shu),2023,12(5):1516-1552.CHEN H S,LI H,XU Y J,et al.Research progress on energy storage technologies of China in 2022[J].Energy Storage Science and Technology,2023,12(5):1516-1552.
[9]姜竹,鄒博(bo)楊,叢(cong)琳,等.儲能(neng)技(ji)術(shu)研究進展與(yu)展望[J].儲能(neng)科學(xue)與(yu)技(ji)術(shu),2022,11(9):2746-2771.JIANG Z,ZOU B Y,CONG L,et al.Research progress and prospect of energy storage technology[J].Energy Storage Science and Technology,2022,11(9):2746-2771.
[10]李磊(lei),王昆彥,王育(yu)喬(qiao).陽離子(zi)取代(dai)對尖(jian)晶石型硫化物儲能性能的影響[J].石油化工(gong)高(gao)等學(xue)校(xiao)學(xue)報,2022,35(6):59-65.LI L,WANG K Y,WANG Y Q.Effect of cation substitution on energy storage performance of spinel sulfides[J].Journal of Petrochemical Universities,2022,35(6):59-65.
[11]曾光,紀陽(yang),符津銘(ming),等(deng).儲(chu)能技術(shu)研究現狀(zhuang)、熱點趨勢與應用進展[J].中(zhong)國電機(ji)工(gong)程學(xue)報,2023,43(S1):127-142.ZENG G,JI Y,FU J M,et al.Research status,hot trends and application progress of thermal energy storage technology[J].Proceedings of the CSEE,2023,43(S1):127-142.
[12]李(li)拴魁,林原,潘(pan)鋒.熱能(neng)存儲(chu)及轉化技(ji)術(shu)進(jin)展與(yu)展望(wang)[J]儲(chu)能(neng)科(ke)學與(yu)技(ji)術(shu),2022,11(5):1551-1562.LI S K,LIN Y,PAN F.Research progress in thermal energy storage and conversion technology[J].Energy Storage Science and Technology,2022,11(5):1551-1562.
[13]周(zhou)玥,周(zhou)子健,曹(cao)田田,等.基于(yu)光熱發電的(de)熱化學(xue)(xue)儲熱體系(xi)研(yan)究現(xian)狀(zhuang)與展望[J].中南大學(xue)(xue)學(xue)(xue)報(bao):自然科學(xue)(xue)版,2022,53(12):4818-4832.ZHOU Y,ZHOU Z J,CAO T T,et al.Research progress and prospects in thermochemical heat storage systems for solar thermal power generation[J].Journal of Central South University(Science and Technology),2022,53(12):4818-4832.
[14]袁振國.熔(rong)鹽儲能供(gong)蒸汽技(ji)術的應用(yong)前景分析[J].能源與節(jie)能,2022,(3):116-119.YUAN Z G.Application prospect of molten salt energy storage technology for steam supply[J].Energy and Energy Conservation,2022,(3):116-119.
[15]林俊(jun)光(guang),仇(chou)秋玲(ling),羅(luo)海華,等.熔(rong)鹽儲熱技(ji)術(shu)的應用(yong)現狀[J].上海電氣(qi)技(ji)術(shu),2021,14(2):70-73.LIN J G,QIU Q L,LUO H H,et al.Application status of molten salt heat storage technology[J].Jouranl of Shanghai Electric Technology,2021,14(2):70-73.
[16]趙倩,王俊勃(bo),宋宇寬,等.熔融鹽(yan)高儲熱材料的(de)研(yan)究進展[J].無(wu)機鹽(yan)工業,2014,46(11):5-8.ZHAO Q,WANG J B,SONG Y K,et al.Research progress in high heat storage material of molten salt[J].Inorganic Chemicals Industry,2014,46(11):5-8.
[17]孟凡(fan)星.碳酸鹽熔(rong)鹽儲熱材料熱物(wu)性模(mo)擬研究(jiu)[D].北(bei)京:華北(bei)電力大(da)學(xue),2021.MENG F X.Simulation of the thermophysical properties of carbonate molten salts for thermal energy storage[D].Beijing:North China Electric Power University,2021.
[18]羅婧(jing).光熱電站中(zhong)316L不銹鋼在碳酸熔(rong)鹽中(zhong)的腐蝕及FeAl防護(hu)涂層研(yan)究[D].安徽合肥:中(zhong)國科學(xue)技術大學(xue),2022.LUO J.Studies on molten carbonate salt corrosion of SS316L and FeAl coating in concentrated solar power plants[D].Hefei,Anhui:University of Science and Technology of China,2022.
[19]WU Y T,REN N,WANG T,et al.Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant[J].Solar Energy,2011,85(9):1957-1966.
[20]LUO J,DENG C K,TARIQ N U H,et al.Corrosion behavior of SS316L in ternary Li2CO3-Na2CO3-K2CO3 eutectic mixture salt for concentrated solar power plants[J].Solar Energy Materials and Solar Cells,2020,217:110679.
[21]楊薛(xue)明,陶(tao)嘉偉,孟凡星,等.Li2CO3/Na2CO3/K2CO3及其(qi)混合熔融鹽儲熱材料熱物(wu)性分子(zi)動力(li)學(xue)研(yan)究[J].太陽能學(xue)報,2023,44(5):48-58.YANG X M,TAO J W,MENG F X,et al.Molecular dynamics study of thermophysical properties of Li2CO3/Na2CO3/K2CO3 and their mixed molten salt for heat storage[J].Acta Energiae Solaris Sinica,2023,44(5):48-58.
[22]崔(cui)吉祥(xiang).氯化熔融鹽蓄熱(re)材料熱(re)物(wu)性模擬研究[D].北(bei)京:華北(bei)電(dian)力大學,2021.CUI J X.Simulation of the thermophysical properties of molten chloride salts for thermal energy storage[D].Beijing:North China Electric Power University,2021.
[23]丁文進,Thomas B.下一代太(tai)陽能光熱電站中熔融(rong)氯鹽技術研發(fa)進展[J].Engineering,2021,7(3):334-347.DING W J,THOMAS B.Progress in research and development of molten chlorine salts for next generation concentrated solar power plants[J].Engineering,2021,7(3):334-347.
[24]孫李平.太(tai)陽能(neng)高(gao)溫熔鹽優選及腐蝕特性實驗(yan)研究(jiu)[D].北京:北京工業(ye)大(da)學,2007.SUN L P.Experimental research on solar energy high temperature molten salt optimization and its corrosion property[D].Beijing:Beijing University of Technology,2007.
[25]WEI X L,SONG M,WANG W L,et al.Design and thermal properties of a novel ternary chloride eutectics for hightemperature solar energy storage[J].Applied Energy,2015,156:306-310.
[26]LI P W,MOLINA E,WANG K,et al.Thermal and transport properties of NaCl-KCl-ZnCl2 eutectic salts for new generation high-temperture heat-transfer fluids[J].Journal of Solar Energy Engineering,2016,138(5):054501.
[27]伍艷萍.耐磨合金在高溫氟化物熔鹽(yan)中的腐蝕行為研究(jiu)[D].北(bei)京:中國(guo)科(ke)學院大(da)學,2022.WU Y P.Study on corrosion behavior of wear-resistant alloy in high temperature fluoride molten salt[D].Beijing:University of Chinese Academy of Sciences,2022.
[28]鄒露璐(lu),吳玉庭,馬重芳(fang).低熔(rong)點四元混合硝酸鹽的(de)開(kai)發與實驗研究[J].太陽(yang)能學報,2020,41(5):27-32.ZOU L L,WU Y T,MA C F.Experimental study of low melting point mixed nitrates[J].Acta Energiae Solaris Sinica,2020,41(5):27-32.
[29]王軍(jun)濤(tao),徐芳(fang),韓海軍(jun).三元(yuan)體系NaNO3-KNO3-Ca(NO3)2相(xiang)圖(tu)預測(ce)及(ji)其熱力學研究[J].太陽(yang)能(neng)學報,2016,37(5):1262-1269.WANG J T,XU F,HAN H J.Phase diagram prediction and thermodynamic properties of the ternary system NaNO3-KNO3-Ca(NO3)2[J].Acta Energiae Solargis Sinica,2016,37(5):1262-1269.
[30]國家能(neng)源局(ju).關于建(jian)設太陽能(neng)熱發電示范項目的通知(zhi)[2016]223號[A/OL].(2016-09-13)[2023-12-30].http://zfxxgk.nea.gov.cn/auto87/201609/t20160914_2298.htm.National Energy Administration.Notice on construction of solar thermal power generation demonstration project[2016]No.223[A/OL].(2016-09-13)[2023-12-30].http://zfxxgk.nea.gov.cn/auto87/201609/t20160914_2298.htm.
[31]觀(guan)研(yan)報(bao)告網.新增光(guang)熱(re)項目及政(zheng)策(ce)扶持力度加碼我國光(guang)熱(re)發電(dian)行業(ye)市場規模(mo)已超百億[EB/OL].(2023-06-9)[2023-12-30].https://www.chinabaogao.com/market/202306/636746.html.Insight and Info.New solar thermal projects and policy support increased,the market size of China's solar thermal power generation industry has exceeded 10 billion[EB/OL].(2023-06-9)[2023-12-30].https://www.chinabaogao.com/market/202306/636746.html.
[32]左(zuo)芳菲,韓(han)偉,姚明宇(yu).熔鹽儲能在(zai)新(xin)型(xing)電(dian)力(li)系統中應用現狀與發展趨勢(shi)[J].熱力(li)發電(dian),2023,52(2):1-9.ZUO F F,HAN W,YAO M Y.Application status and development trend of molten salt energy storage in novel power systems[J].Thermal Power Generation,2023,52(2):1-9.
[33]余抒陽.太(tai)陽能單罐熔鹽儲熱特性數值模擬研究[D].吉林省吉林市:東北電(dian)力大學,2020.YU S Y.Numerical simulation and study on heat storage characteristics of molten-salt based single-tank solar energy thermal energy storage system[D].Jilin,Jilin Province:Northeast Electric Power University,2020.
[34]張(zhang)墨耕,韓(han)兆輝,顧鵬程(cheng),等.塔(ta)式光熱技術在(zai)綜合能源系(xi)統中的應用[J].新(xin)疆石油天然氣,2022,18(2):71-77.ZHANG M G,HAN Z H,GU P C,et al.Application of tower photothermal technology in integrated energy system[J].Xinjiang Oil&Gas,2022,18(2):71-77.